4.6 Article

Seasonal Changes in Hepatic Gene Expression Reveal Modulation of Multiple Processes in Rainbow Smelt (Osmerus mordax)

期刊

MARINE BIOTECHNOLOGY
卷 12, 期 6, 页码 650-663

出版社

SPRINGER
DOI: 10.1007/s10126-009-9252-8

关键词

Rainbow smelt; Osmerus mordax; Microarray; Glycerol; Antifreeze protein; Cold adaptation; qPCR

资金

  1. NRC-IMB
  2. Genome Canada
  3. Genome BC

向作者/读者索取更多资源

Rainbow smelt (Osmerus mordax) are freeze-resistant fish that accumulate glycerol and produce an antifreeze protein during winter. Quantitative reverse transcription PCR (qPCR) and subtractive hybridization studies have previously revealed five genes in rainbow smelt liver to be differentially regulated in winter in comparison with the fall when water temperatures are warmer. In order to further define the suite of processes that are regulated seasonally, we undertook a large-scale analysis of gene expression by hybridization of smelt cDNA to the salmonid 16K cGRASP microarray. In total, 69 genes were identified as up-regulated and 14 genes as down-regulated under winter conditions. A subset of these genes was examined for differential regulation by qPCR in the individual cDNA samples that were pooled for microarray analysis. Ten of the 15 genes tested showed significant change in the same direction as microarray results, whereas one showed significant change in the opposite direction. Fructose-bisphosphate aldolase B and the cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase were among the most highly up-regulated genes, a result supporting a metabolic focus on glycerol synthesis during winter. Modulation of other processes, including endoplasmic reticulum stress, lipid metabolism and transport, and protein synthesis, was also suggested by the qPCR analysis of array-identified genes. The 15 genes were subsequently examined by qPCR for seasonal variation in expression over five sampling times between October and March, and ten showed significant variation in expression over the sampling period. Taken together, these results provide new understanding of the biochemical adaptations of vertebrates to an extremely low seasonal temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据