4.7 Article

New Zealand's deepwater frontier

期刊

MARINE AND PETROLEUM GEOLOGY
卷 27, 期 9, 页码 2005-2026

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2010.05.010

关键词

New Zealand; Frontier basins; Petroleum prospectivity

资金

  1. New Zealand government FRST

向作者/读者索取更多资源

The islands of New Zealand cover an area of approximately 250,000 km(2), but the New Zealand Exclusive Economic Zone (EEZ) extends to around 4 million km(2) and recent confirmation of New Zealand's Extended Continental Shelf (ECS) has added a further 1.7 million km(2) to the country's marine estate. Within the 5.7 million km(2) of New Zealand's marine territory, approximately 1.2 million km(2) are underlain by sedimentary accumulations which may be thick enough to expel petroleum. New Zealand is almost entirely surrounded by sedimentary basins and all that have been explored for petroleum have deepwater extensions. In addition, several deepwater basins have no onshore or shallow water portions (Fig. 1). The northeastern seaboard of the country was once part of the Eastern Gondwana margin. A series of basins that developed along that margin may be related to the Gondwana trench system. They include the Northland Slope Basin to the northeast of the Northland Peninsula, probably the East Coast Basin of North Island and the Chatham Slope Basin (Figs. 1 and 2). The eastern seaboard of North Island is occupied by the East Coast Basin, a fold and thrust belt above the subducting slab of the Pacific plate. Despite more than 100 years of exploration, the East Coast Basin remains a frontier basin and deepwater extensions of the East Coast Basin, including the Raukumara Sub-basin to the north of the Raukumara Peninsula and the Pegasus Sub-basin to the east of Cook Strait (Fig. 1) have only recently begun to be investigated. Northwest of the country, three belts of basins are known; the Northland and Reinga basins occupy the zone closest to the Gondwana margin's volcanic arc and may have originated as fore-arc basins. The head of the New Caledonia Basin contains deepwater parts of the currently productive Taranaki Basin and this basin may have originated in Mesozoic time as a back-arc rift basin. The Northland/Reinga and Deepwater Taranaki sedimentary accumulations are separated by the buried West Norfolk basement ridge and both have extensions beyond New Zealand's jurisdiction and into Australian territory. The western side of the Challenger Plateau may also contain thick sedimentary accumulations. In particular, the Bellona Gap between Challenger Plateau and the Lord Howe Rise and the Monawai Basin along the western flank of the Lord Howe Rise both contain thick sedimentary accumulations, and may have originated as intracontinental basins. To the east of New Zealand, the pattern continues. Basins associated with the fore-arc and trench zone of Gondwana include the Pegasus and Chatham Slope basins. The Chatham Rise basins may have originated as part of the fore-arc, while the Canterbury Basin and the Bounty Trough occupy the back-arc location. The submerged continental mass of New Zealand extends east and southeast of South Island as the Campbell Plateau. The Great South Basin occupies a large area of the Campbell Plateau, where four other named sedimentary accumulations; the Pukaki, Outer Pukaki, Campbell and Outer Campbell basins remain largely unexplored. To the west of Stewart Island, the Solander Basin is the offshore continuation of the onshore Te Anau and Waiau basin system. These southern basins were all created by rift faulting prior to, and during Late Cretaceous opening of the Tasman Sea and Southern Ocean. More than 50 oil and gas seeps are known from the West Coast region of South Island, some associated with faults and others in coal exploration wells. To date, no commercial quantities of petroleum have been discovered within the region, although coal-bearing sedimentary basins extend offshore. Although the petroleum histories of most of the onshore and nearshore areas are considered to begin with Late Cretaceous rifting leading to break-up of Gondwana and basin formation, new data suggests that the rifting history of the 500 km wide Gondwana margin zone that we now know as the New Zealand mini-continent extended further back into the Mesozoic. Basins that were previously considered to be Cretaceous rift basins appear to have developed across older features, probably exploiting preexisting faults and regions of thinned crust. In onshore New Zealand and on the continental shelf, many of the source rocks are coaly and were deposited during the rifting period associated with Late Cretaceous plate separation and formation of the Tasman Sea and Southern Ocean. During basin formation, the earliest sediments to be deposited were commonly fluvial, lacustrine, deltaic and nearshore facies with an increasing marine influence as the region foundered through the latest Cretaceous and Paleogene. The exceptions to this pattern are the basins of the East Coast of North Island which developed near the Gondwana margin and appear to be almost entirely marine. The present plate boundary was initiated near the start of the Neogene as the New Zealand landmass emerged in response to plate collision. Many of the more spectacular structures in the New Zealand sedimentary basins were formed during the Neogene. Meanwhile, the deepwater basins away from the plate margin continued a quieter development. Some inversion occurred, but generally not to the extent of the nearshore and onshore regions. The relatively gentle structural evolution of the deepwater basins increases the likelihood of discovering large hydrocarbon fields in their intact structural traps. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Geosciences, Multidisciplinary

Determination of in situ hydrocarbon contents in shale oil plays: Part 3: Quantification of light hydrocarbon evaporative loss in old cores based on preserved shales

Weijiao Ma, Jinbu Li, Min Wang

Summary: The petroleum resource assessment obtained from laboratory tests on old core samples tends to underestimate the in situ resources. This study investigates the hydrocarbon loss and restoration by comparing preserved and exposed core samples. It is found that previous studies have severely underestimated the in situ hydrocarbon potential due to factors such as sample crushing and crucible waiting. A new restoration model is proposed to compensate for these losses.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Source of quartz cement and its impact on reservoir quality in Jurassic Shaximiao Formation in central Sichuan Basin, China

Shaoyun Chen, Yongqiang Yang, Longwei Qiu, Xiaojuan Wang, Erejep Habilaxim

Summary: Quartz cement is an important authigenic mineral in the tight sandstones of the Shaximiao Formation in the Sichuan Basin. This study analyzed the silicon sources of the quartz cement using mineralogical, fluid inclusion, and geochemical data. The results showed that smectite alteration and dissolution of aluminosilicate minerals were the primary sources of silicon for quartz cementation. Contributions from volcanic material hydrolysis and pressure solution were relatively minor. The presence of chlorite films inhibited the development of quartz overgrowths and had minimal impact on reservoir quality.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Detrital zircon geochronology and provenance of Cenozoic deposits in the Qaidam basin, northern Tibetan plateau: An overview with new data, implications and perspectives

Xing Jian, Ping Guan, Ling Fu, Wei Zhang, Xiaotian Shen, Hanjing Fu, Ling Wang

Summary: This study presents a synthesis of new detrital zircon dating results and published data from the Cenozoic Qaidam basin, revealing the spatiotemporal variation of detrital zircon age populations and supporting models of synchronous deformation in northern Tibet. The study emphasizes the importance of considering textural and sedimentological parameters in zircon provenance interpretations, as well as the need for integrated provenance analysis involving other detritus components.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Hydrothermal amorphous silica, barite and orpiment from the crater area of seamount (SM-13) off Nicobar island, Andaman sea: Indications for the development of a new hydrothermal field

A. Peketi, G. Sriram, A. Mazumdar, P. Dewangan, A. Zatale, V. Rajurkar, Gayatri Shirodkar, V. Mahale, V. Yatheesh

Summary: This study investigates 13 submarine seamounts in the southern Andaman volcanic arc and observes evidence of hydrothermal activity in one of the seamounts. The evidence includes plumes rich in dissolved gases, live chemosymbiotic organisms, and the deposition of neoforming minerals. These observations suggest the development of a new hydrothermal field in the least explored Andaman Sea.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Fluid evolution in the Permian Maokou Formation in the Tailai Gas Field, eastern Sichuan Basin, China

Yanxian Zhu, Zhiliang He, Xiaowen Guo, Long Li, Sheng He, Jian Gao, Shuangjian Li, Huili Li

Summary: This study investigates the fluid evolution history of the hydrothermal dolomite reservoir in the Middle Permian Maokou Formation in the Sichuan Basin. The results reveal the diagenetic sequences, mineral origins, salinity history, and pressure evolution using various analytical techniques. The findings provide important insights into the gas charge, escape, and preservation conditions of the reservoir.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Coquina depositional model, Buzios Field, Brazil

Rafaella de Carvalho Antunes, Julia Campos Guerrero, Ricardo Jorge Jahnert

Summary: This study presents a detailed sedimentary model and identifies various sedimentary facies associations in the coquina deposits of the Itapema Formation in the offshore pre-salt Buzios Field of the Santos Basin. These facies associations were primarily influenced by waves and currents and reflect a complex depositional system.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Assessment of thermal maturity in Lower Cambrian organic-rich shale in south China using integrated optical reflectance and Raman spectroscopy of pyrobitumen

Kang Meng, Tongwei Zhang, Deyong Shao, Xiuyan Liu, Hui Song, Heng Peng

Summary: In this study, an integrated method of measuring optical reflectance and Raman spectroscopy is proposed to accurately determine the thermal maturity of Lower Cambrian shales in South China. The results show that this method is reliable and effective, and it has important implications for analyzing overmature shale.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Depositional and sequence stratigraphic controls on diagenesis in the Upper Cambrian-Lower Ordovician Barik Formation, central Oman: Implications for prediction of reservoir porosity in a hybrid-energy delta system

Mohamed A. K. El-Ghali, Olga Shelukhina, Iftikhar Ahmed Abbasi, Mohamed S. H. Moustafa, Osman Salad Hersi, Numair A. Siddiqui, Khalid Al-Ramadan, Abdullah Alqubalee, Abdulwahab Muhammad Bello, Abduljamiu O. Amao

Summary: This study employs an integrated depositional and sequence stratigraphic approach to assess the control of diagenesis on reservoir porosity of a hybrid-energy delta system. The study focuses on the Barik Formation in the Haushi-Huqf region of Central Oman, which represents a highstand system tract of a hybrid-energy delta. The assessments reveal that the reservoir porosity is controlled by various degrees of diagenetic processes, including mechanically infiltrated clays and kaolinitization of silicate grains.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Origin of lithium in oilfield brines in continental petroliferous basin: Insights from Li and Sr isotopes in the Jianghan Basin, central China

Xiaocan Yu, Chunlian Wang, Hua Huang, Kai Yan

Summary: Oilfield brines are a significant alternative lithium resource. This study investigates the metallogenic characteristics and enrichment process of oilfield brines from the Jianghan Basin, central China using chemical and multi-isotope data. The results suggest that lithium enrichment in these brines is the result of interaction with clastic host rocks and dilution by meteoric water.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Unravelling Cenozoic carbonate platform fluid expulsion: Deciphering pockmark morphologies and genesis in the Tanintharyi shelf of the Andaman Sea as promising hydrocarbon reservoirs

Jianghao Qiao, Xiwu Luan, Thanuja D. Raveendrasinghe, Yintao Lu, Guozhang Fan, Xinyuan Wei, Long Jin, Jian Yin, Haozhe Ma, Lushan Jiang

Summary: This study investigates the Tanintharyi passive continental margin in the Andaman Sea and reveals the potential of the Oligocene/Early Miocene carbonate platform in the region as a significant hydrocarbon reservoir. It also examines the influence of changes in sedimentary facies and the tectonic setting of the Andaman Sea on the evolution of pockmarks.

MARINE AND PETROLEUM GEOLOGY (2024)

Article Geosciences, Multidisciplinary

Source rock potential and spatial distribution of the stratigraphic formations in the central Mediterranean Ridge: Evidence from mud volcanic deposits and 2D seismic data

Anastasios Nikitas, Georgios Makrodimitras, Maria V. Triantaphyllou, Nikolaos Pasadakis, Kimon Christanis, Stavros Kalaitzidis, Grigoris Rousakis, Ioannis Panagiotopoulos, Alexandra Gogou, Alexandros Papadopoulos, Efthimios Tartaras, Aristofanis Stefatos

Summary: Due to the lack of deep wells in the broader region, studying mud volcanic deposits can improve the geological understanding of the Mediterranean Ridge. In this study, biostratigraphic and geochemical analyses were performed on mud breccia deposits from five Mud Volcanoes in the central MR. The results indicate the origin of these deposits and provide insights into the source rock potential. Seismic data is also used to determine the distribution of major lithostratigraphic formations.

MARINE AND PETROLEUM GEOLOGY (2024)