4.2 Article

Multiple mutant T alleles cause haploinsufficiency of Brachyury and short tails in Manx cats

期刊

MAMMALIAN GENOME
卷 24, 期 9-10, 页码 400-408

出版社

SPRINGER
DOI: 10.1007/s00335-013-9471-1

关键词

-

资金

  1. National Center for Research Resources [R24 RR016094]
  2. Office of Research Infrastructure Programs [OD R24OD010928]
  3. Winn Feline Foundation [10-015]
  4. UC Davis Center for Companion Animal Health George and Phyllis Miller Feline Health Fund
  5. NIAID [AI061061]
  6. American Cancer Society [RSG-09-045-01-DDC]

向作者/读者索取更多资源

Most mammals possess a tail, humans and the Great Apes being notable exceptions. One approach to understanding the mechanisms and evolutionary forces influencing development of a tail is to identify the genetic factors that influence extreme tail length variation within a species. In mice, the Tailless locus has proven to be complex, with evidence of multiple different genes and mutations with pleiotropic effects on tail length, fertility, embryogenesis, male transmission ratio, and meiotic recombination. Five cat breeds have abnormal tail length phenotypes: the American Bobtail, the Manx, the Pixie-Bob, the Kurilian Bobtail, and the Japanese Bobtail. We sequenced the T gene in several independent lineages of Manx cats from both the US and the Isle of Man and identified three 1-bp deletions and one duplication/deletion, each predicted to cause a frameshift that leads to premature termination and truncation of the carboxy terminal end of the Brachyury protein. Ninety-five percent of Manx cats with short-tail phenotypes were heterozygous for T mutations, mutant alleles appeared to be largely lineage-specific, and a maximum LOD score of 6.21 with T was obtained at a recombination fraction (I similar to) of 0.00. One mutant T allele was shared with American Bobtails and Pixie-Bobs; both breeds developed more recently in the US. The ability of mutant Brachyury protein to activate transcription of a downstream target was substantially lower than wild-type protein. Collectively, these results suggest that haploinsufficiency of Brachyury is one mechanism underlying variable tail length in domesticated cats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据