4.5 Article

High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 69, 期 3, 页码 793-802

出版社

WILEY-BLACKWELL
DOI: 10.1002/mrm.24320

关键词

IRIS; diffusion tensor imaging; sensitivity encoding; multishot; navigator; motion correction; 7 T

资金

  1. NIH Bioengineering Research Partnership (BRP) [RO1 EB000461]

向作者/读者索取更多资源

The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 T. Increased off-resonance effects and reduced transverse relaxation times at 7 T, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multishot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multishot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multishot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard sensitivity-encoding (SENSE) algorithm to account for shot-to-shot phase errors; the method is called image reconstruction using image-space sampling function (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 T. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. Magn Reson Med, 2013. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据