4.7 Article

Nonlinear creep in a polymer glass

期刊

MACROMOLECULES
卷 41, 期 13, 页码 4969-4977

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma8001214

关键词

-

向作者/读者索取更多资源

Results of molecular dynamics simulations are presented for the nonlinear creep response of a model polymer glass under both tension and compression. The structure of the material was examined as a function of time; it is found that the overall structure, as measured by the structure factor, changes appreciably during the deformation. The intensity of the first peak is decreased under stress and the polymer chains are deformed. The dynamics are studied using both the bond autocorrelation function and the incoherent dynamic structure factor. It is found that the dynamics are strongly correlated with the strain rate in the material. Additionally, each measure of the dynamics is uniformly enhanced by the same amount. Previous simulations have shown that the enhanced dynamics do not correlate with changes in the volume in any clear manner; here, evidence from simulations indicates that the enhanced dynamics correlate with the energy of the inherent structures of the material, suggesting that changes in the materials' position on the potential energy landscape lead to the observed enhanced dynamics. Finally, the results of simulations are discussed in terms of two theories of stress-induced dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据