4.0 Review

Synchronization and genetic redundancy in circadian clocks

期刊

M S-MEDECINE SCIENCES
卷 24, 期 3, 页码 270-276

出版社

MASSON EDITEUR
DOI: 10.1051/medsci/2008243270

关键词

-

向作者/读者索取更多资源

A network of feedback loops constitutes the basis for circadian timing in mammals. Complex transcriptional, post-transcriptional and post-translational events are also involved in the ticking of circadian clocks, allowing them to run autonomously with their characteristic, near-24h period. Central to the molecular mechanism is the CLOCK/BMAL1 heterodimer of transcription factors. Recent data using Clock knock-out mice however suggest that CLOCK may not be as mandatory as initially suggested from data gathered in the Clock mutant mouse model. Indeed, it appears that the Clock homolog Npas2 is able to functionally compensate for Clock genetic ablation. Furthermore, real-time imaging techniques using different clock genes knock-out lines established on a PER2 ::Luc knock-in background now demonstrate that persistent rhythmicity in the suprachiasmatic nuclei likely arises as a consequence of combined genetic redundancy and strong intercellular coupling, the latter characteristic being likely weakened in peripheral tissues such as liver or lung. The present review aims at summarizing current knowledge of the molecular basis of circodian clocks and possible differences between central and peripheral clocks in light of recent findings in Clock knock-out mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据