4.7 Article

Ultrahigh bacterial production in a eutrophic subtropical Australian river: Does viral lysis short-circuit the microbial loop?

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 56, 期 3, 页码 1115-1129

出版社

WILEY
DOI: 10.4319/lo.2011.56.3.1115

关键词

-

资金

  1. Coastal Cooperative Research Centre
  2. Healthy Waterways Partnership

向作者/读者索取更多资源

We studied trophic dynamics in a warm eutrophic subtropical river (Bremer River, Australia) to determine potential sources of dissolved organic carbon (DOC) and the fate of heterotrophic bacterial production. Sustained high rates of bacterial production suggested that the exogenous DOC was accessible (labile). Bacterial specific growth rates (0.2 h(-1) to 1.8 h(-1)) were some of the highest measured for natural aquatic ecosystems, which is consistent with high respiration rates. Bacteria consumed 10 times more organic carbon than that supplied by the daily algal production, a result that implies that terrestrial sources of organic carbon were driving the high rates of bacterial production. Viruses (10(11) L-1) were 10 times more abundant than bacteria; the viral to bacterial ratio ranged from 3.5 to 12 in the wet summer and 11 to 35 in the dry spring weather typical of eutrophic environments. Through a combination of high bacterial respiration and phage lysis, a continuous supply of terrestrial DOC was lost from the aquatic ecosystem in a CO2-vented bacterial-viral loop. Bacterial processing of DOC in subtropical rivers may be contributing disproportionately large amounts of CO2 to the global carbon cycle compared to temperate freshwater ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据