4.3 Article

Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways

期刊

LEUKEMIA & LYMPHOMA
卷 52, 期 11, 页码 2139-2147

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/10428194.2011.591013

关键词

Drug resistance; myeloid leukemias and dysplasias; cell lines and animal models

资金

  1. Novartis Pharmaceuticals
  2. Bristol-Myers Squibb

向作者/读者索取更多资源

There are three currently identified secondary resistance mechanisms observed in patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitors (TKIs). These are BCR-ABL kinase domain (KD) mutations, increased BCR-ABL expression, and overexpression of drug-efflux proteins (ABCB1 and ABCG2). To investigate the interplay between these three modes of resistance, three CML blast crisis cell lines (K562, its ABCB1-overexpressing variant K562 Dox, and KU812) were cultured in gradually increasing concentrations of imatinib to 2 mu M, or dasatinib to 200 nM. Eight imatinib-and two dasatinib-resistant cell lines were established. Two imatinib-resistant K562 lines both had increased BCR-ABL expression as the apparent mode of resistance. However, when a dasatinib-resistant K562 culture was generated we observed gradually increasing BCR-ABL expression which peaked prior to identification of the T315I mutation. BCR-ABL overexpression followed by mutation development was observed in a further 4/10 cell lines, each with different KD mutations. In contrast, three imatinib-resistant K562 Dox lines exhibited only a further increase in ABCB1 expression. All TKI-resistant cell lines generated had increased IC50 (dose of drug required to reduce phosphorylation of the adaptor protein p-Crkl by 50%) to imatinib, dasatinib, and nilotinib, regardless of which TKI was used to induce resistance. This suggests that currently available TKIs share the same susceptibilities to drug resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据