4.1 Article

A spiral self-magnetically insulated ion diode

期刊

LASER AND PARTICLE BEAMS
卷 30, 期 3, 页码 427-433

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0263034612000316

关键词

Accelerator; Intense ion beams; Self-magnetically insulated diode

资金

  1. Federal Program Scientific and pedagogical personnel for innovative Russia [SC P943]

向作者/读者索取更多资源

The paper presets the results of a study on a self-magnetically insulated ion diode with an explosive-emission potential electrode. The experiments have been carried out using the TEMP-4M accelerator, operating in a double-pulse mode: the first negative pulse (300-500 ns, 100-150 kV) followed by the second positive pulse (150 ns, 250-300 kV). The ion beam energy density was 0.3-2.5 J/cm(2); the beam was composed from carbon ions (80-85%) and protons. We studied several geometries of the diode: planar and focusing strip arrangement, annular and spiral geometries. It was shown that during the second voltage pulse, a condition of magnetic insulation in the diode gap is fulfilled (B/B-cr >= 3). Using the new spiral geometry of the diode, it was possible to increase the efficiency of ion current generation due to the suppression of the electron component of the total diode current by increasing the electron transit time in the gap. We have increased the efficiency of carbon ion generation from 5-9% (in the planar strip diodes) up to 17-20% in the spiral diode. The spiral geometry of the diode makes it possible to increase the efficiency of C+ ion generation 25-30 times compared to the space-charge-limited current (Childe-Langmuir limit). This is more than two times higher than in other known geometries of self-magnetically insulated diodes. The spiral diode has a resource of more than 10(7) pulses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据