4.6 Article

Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing

期刊

LANGMUIR
卷 34, 期 49, 页码 14851-14857

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b01576

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2015CB932601]
  2. Hubei Provincial Natural Science Foundation of China [2015CFB503]
  3. Jiangsu Provincial Natural Science Foundation of China [BK20161248, BK20160381]
  4. National Natural Science Foundation of China [21503151, 81602610]
  5. Wuhan Youth Science and Technology Plan [2016070204010131]
  6. Fundamental Research Funds for the Central Universities [2042018kf0210]
  7. 1000 Young Talent

向作者/读者索取更多资源

Isothermal enzyme-free nucleic acid circuits have been developed for carrying out diverse functions ranging from dictate biocomputing to amplified biosensing. Catalytic hairpin assembly (CHA), the catalyzed cross-opening of two hairpin substrates by an initiator, has attracted increasing attention because of its facile design and high amplification capacity. The complex labeling and frequent photobleaching of a conventional fluorescent CHA biosensor still remains a challenge that needs to be solved. Herein, we constructed a new label-free and enzyme-free isothermal CHA lighting up AgNCs strategy for amplified nucleic acid assay by integrating the interfacially and spatially sensitive feature of DNA-templated fluorescent silver nanoclusters (DNA-AgNCs) and the high signal amplification capability of the CHA circuit. In this strategy, one polyguanine-grafted hairpin and the other AgNCs-capturing hairpin were engineered as assembly constitutes, which were kinetically impeded from cross-hybridizations without target. However, in the presence of target, the CHA-catalyzed assembly of two functional hairpins was successively progressed and concomitantly accompanied by an efficient accommodation of AgNCs to the polyguanine-elongated dsDNA product, leading to highly efficient AgNCs-lighting up and to the generation of an amplified fluorescence signal. As a simple mix-and-detect strategy, the isothermal enzyme-free CHA-mediated lighting up AgNCs (CHA-AgNCs) system provided a facile visualization way for amplified detection of DNA with a detection limit of 20 pM, which was comparable to or even better than some enzyme-involved amplification methods. The homogeneous CHA-AgNCs system can be used as a general sensing platform and be easily adapted for analyzing other biologically important analytes, for example, microRNA (miRNA), by introducing the sensing module consisting of an auxiliary hairpin through an easy-to-integrate procedure. By taking advantage of the signal amplification features of CHA and the robust AgNCs-lighting up procedure, we anticipate that the CHA-lighting up AgNCs system can provide an important tool for biomedicine and bioimaging applications and thus should hold great promise in clinical diagnoses and treatment fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据