4.6 Article

Contribution of the Hydration Force to Vesicle Adhesion on Titanium Oxide

期刊

LANGMUIR
卷 30, 期 19, 页码 5368-5372

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la404581d

关键词

-

资金

  1. National Research Foundation [NRF-NRFF2011-01]
  2. National Medical Research Council [NMRC/CBRG/0005/2012]
  3. Nanyang President's Graduate Scholarship

向作者/读者索取更多资源

Titanium oxide is a biocompatible material that supports vesicle adhesion. Depending on experimental parameters, adsorbed vesicles remain intact or rupture spontaneously. Vesicle rupture has been attributed to electrostatic attraction between vesicles and titanium oxide, although the relative contribution of various interfacial forces remains to be clarified. Herein, we investigated the influence of vesicle surface charge on vesicle adsorption onto titanium oxide and observed that electrostatic attraction is insufficient for vesicle rupture. Following this line of evidence, a continuum model based on the DLVO forces and a non-DLVO hydration force was applied to investigate the role of different interfacial forces in modulating the lipid-substrate interaction. Within an experimentally significant range of conditions, the model shows that the magnitude of the repulsive hydration force strongly influences the behavior of adsorbed vesicles, thereby supporting that the hydration force makes a strong contribution to the fate of adsorbed vesicles on titanium oxide. The findings are consistent with literature reports concerning phospholipid assemblies on solid supports and nanoparticles and underscore the importance of the hydration force in influencing the behavior of phospholipid films on hydrophilic surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据