4.6 Article

Bacterial Capture Efficiency and Antimicrobial Activity of Phage-Functionalized Model Surfaces

期刊

LANGMUIR
卷 27, 期 9, 页码 5472-5480

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la200102z

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chairs (CRC)

向作者/读者索取更多资源

The rise of antibiotic-resistant bacteria has directed substantial attention toward the use of bacteriophages as a means to control bacterial populations. It has been proposed that bacteriophages can be applied as a coating on surfaces in healthcare settings or on indwelling medical devices to create an antimicrobial surface. In this study, antimicrobial model surfaces functionalized with five different types of bacteriophage were prepared and characterized with X-ray photoelectron spectroscopy and atomic force microscopy. The bacterial capture efficiency of these functionalized surfaces was studied for two common bacteria, Escherichia coli and Salmonella typhimurium. Binding of the :phages to a solid surface affected their biofunctionality as expressed by the capture efficiency and rate of host membrane disruption. Moreover, the size and shape of the bacteriophage and positioning of its specific binding proteins significantly affected its bacterial capture capability in the immobilized state. Symmetric bacteriophages were found to be a better choice for antibacterial surfaces compared to more asymmetric tailed bacteriophages. Immobilized phages were found to disrupt the membranes of attached bacteria and are thus proposed as a candidate for antimicrobial surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据