4.6 Article

Microfluidic Assembly of Monodisperse, Nanoparticle-Incorporated Perfluorocarbon Microbubbles for Medical Imaging and Therapy

期刊

LANGMUIR
卷 26, 期 17, 页码 13855-13860

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la102272d

关键词

-

资金

  1. Government of Ontario
  2. Department of Defense Breast Cancer Research

向作者/读者索取更多资源

New medical imaging contrast agents that permit multiple imaging and therapy applications using a single agent can result in more accurate diagnosis and local treatment of diseased tissue. Solid nanoparticles (NPs) (5-150 nm in size) have emerged as promising imaging and therapy agents, as have micrometer-scale, perfluorocarbon gas-filled microbubbles (MBs) used in patients as intravascular ultrasound contrast agents. We propose that the modular combination of small, solid NPs and larger, highly compressible MBs into a single agent is an effective way to attain the desired complementary and hybrid properties of two very different agents. Presented here is a new strategy for the simple and robust incorporation of various medical NPs with monodisperse MBs based upon the controlled pH-based regulation of the electrostatic attraction between NPs and the MB shell. Using this simple approach, microfluidic-generated, protein-lipid-coated, perfluorobutane MBs (with size control down to 3 mu m) were incorporated with silica-coated NPs, including CdSe/ZnS quantum dots, gold nanorods, iron oxide NPs, and Gd-loaded mesoporous silica NPs. The silica interface permits NP inclusion within MBs to be independent of NP composition, morphology, and size. Significantly, the NP-incorporated MBs (NP-MBs) diluted in saline were detectable using low-pressure ultrasound, and the monodisperse M B platform can be produced at high-throughput, sufficient for in vivo usage (10(6) MB/sec). The modular synthesis of a variety of NP-MBs can facilitate flexible, user-defined, multifunctional imaging and therapy agents tailored for specific applications and disease types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据