4.6 Article

Dispersion and Functionalization of Nonaqueous Synthesized Zirconia Nanocrystals via Attachment of Silane Coupling Agents

期刊

LANGMUIR
卷 24, 期 20, 页码 11497-11505

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la801943n

关键词

-

资金

  1. New Century Excellent Talent Foundation of the Ministry of Education of China [NCET-07-0210]
  2. National Nature Science Foundation of China [50703005]
  3. Shanghai Leading Academic Discipline Project [B113]

向作者/读者索取更多资源

Zirconia (ZrO2) nanocrystals, synthesized from zirconium(IV) isopropoxide isopropanol complex and benzyl alcohol, were dispersed and functionalized in organic solvents using three kinds of bifunctional silane coupling agents (SCAs), 3-glycidoxypropyltrimethoxy si lane (GPTMS), 3-aminopropyltriethoxysilane (APTES), and 3-isocyanatopropyltriethoxysilane (IPTES). Completely transparent ZrO2 dispersions were achieved in tetrahydrofuran (THF) with all three SCAs, in pyridine and toluene with APTES and IPTES, and in N,N-dimethylformamide with IPTES. Dynamic laser scattering (DLS) measurements and high-resolution transmission electron microscopical (HRTEM) observation indicated that the ZrO2 nanocrystals are dispersed on a primary particle size level. Fourier transform infrared spectroscopy, solid-state C-13- and Si-29 NMR spectroscopy, and thermogravimetric analysis demonstrated that all three SCAs are chemically attached to the surface of the ZrO2 nanoparticles, however, in different bonding modes. Except for GPTMS/ZrO2/THF dispersion and IPTES/ZrO2/pyridine dispersion, all other transparent dispersions have poor long-term stability. The increasing polarity, due to high amount of APTES attached and high hydrolysis and condensation degree of the bonded APTES, and the aggregation, due to interparticle coupling via the bonded triethoxysilyl group, are the causes of the poor long-term stability for the ZrO2 dispersions with APTES and IPTES, respectively. Nevertheless, the APTES-functionalized ZrO2 precipitates can be deagglomerated in water to get a stable and transparent aqueous ZrO2 dispersion via addition of a little hydrochloric acid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据