4.6 Article

In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: Binding mechanism, pH effects, and adsorption kinetics

期刊

LANGMUIR
卷 24, 期 15, 页码 8036-8044

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la800490t

关键词

-

向作者/读者索取更多资源

Carboxymethyl cellulose (CMC), in solution and adsorbed on the surface of talc, has been studied with ATR FTIR spectroscopy as a function of the solution pH. The solution spectra enable the calculation of the extent of ionization of the polymer (due to protonation and deprotonation of the carboxyl group) at various pH values, yielding a value of 3.50 for the pK(app)(1/2) (pH at which half of all carboxyl groups are ionized) in a simple electrolyte solution and a value of 3.37 for the pK(app)(1/2) in solutions containing magnesium ions (3.33 x 10(-4) M). The spectra of the adsorbed layer reveal that CMC interacts with the talc surface through a chemical complexation mechanism, via the carboxyl groups substituted on the polymer backbone. The binding mechanism is active at all pH values down to pH 2 and up to pH 11. The adsorbed layer spectra reveal that protonation and deprotonation of the polymer are affected by adsorption, with an increase in the pK(app)(1/2) to a value of 4.80. Spectra of the adsorbed polymer were also acquired as a function of the adsorption time. Adsorption kinetic data reveal that the polymer most likely has two different interactions with the talc surface, with a stronger interaction with the talc edge through chemical complexation and a weaker interaction with the talc basal plane presumably through the hydrophobic interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据