4.6 Article

Mesoporous Zirconium Titanium Oxides. Part 1: Porosity Modulation and Adsorption Properties of Xerogels

期刊

LANGMUIR
卷 24, 期 21, 页码 12312-12322

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la801464s

关键词

-

向作者/读者索取更多资源

A series of zirconium titanium oxide mesophases containing 33 atom % Zr have been prepared using carboxylic acids of different alkyl chain lengths (C-y) from y = 4-18 through organic-inorganic polymer phase segregation as the get transition is approached. Thermal treatment of these transparent gels up to 450 degrees C eliminated the organic template, and domain coarsening occurred affording stable worm-hole mesoporous materials of homogeneous composition and pore diameters varying from about 3 to 4 nm in fine increments. With such materials, it was subsequently possible to precisely study the adsorption of vanadium oxo-anions and cations from aqueous solutions and, more particularly, probe the kinetics of intraparticle mass transport as a function of the associated pore dimension. The kinetics of mass transport through the pore systems was investigated using aqueous vanadyl (VO2+) and orthovanadate (VO3(OH)(2-)) probe species at concentrations ranging from 10 to 200 ppm (0.2 to 4 mmol/L) and pH values of 0 and 10.5, respectively. In the case of both of these vanadium species, the zirconium titanate mesophases displayed relatively slow kinetics, taking in excess of about 500 min to achieve maximum uptake. By using a pseudo-second-order rate law, it was possible to extract the instantaneous and overall rate of the adsorption processes and then relate these to the pore diameters. Both the instantaneous and overall rates of adsorption increased with increasing surface area and pore diameter over the studied pore size range. However, the equilibrium adsorption capacity increased linearly with pore diameter only for the higher concentrations and was independent of pore diameter for the lower concentration. These results have been interpreted using a model in which discrete adsorption occurs at low concentrations and is then followed by multilayer adsorption at higher concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据