4.6 Article

Viscoelastic and Shear Viscosity Studies of Colloidal Silica Particles Dispersed in Monoethylene Glycol (MEG), Diethylene Glycol (DEG), and Dodecane Stabilized by Dodecyl Hexaethylene Glycol Monoether (C12E6)

期刊

LANGMUIR
卷 24, 期 22, 页码 12858-12866

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la8026754

关键词

-

资金

  1. Imperical Chemical Industries Plc (ICI)

向作者/读者索取更多资源

Silica dispersions stabilized by a nonionic surfactant, dodecyl hexaethylene glycol monoether (C12E6), were studied using rheological measurements. The viscosity-shear rate flow behavior of silica in monoethylene glycol (MEG) is shear thinning at low shear rates, leading to a Newtonian plateau at high shear rates for all dispersions studied. All rheological properties showed an increase above a critical surfactant concentration. The dispersions were stable at low levels of C12E6 concentrations because of electrostatic repulsions as deduced from the zeta potentials of silica that were on the order of about -30 to -65 mV in monoethylene glycol (MEG). Instability on further addition of C12E6 to the silica particles, a phenomenon normally obtained with high-molecular-weight polymers, was observed in MEG. Viscoelatic measurements of silica in monoethylene glycol at various surfactant concentrations showed a predominantly Viscous response at low frequency and a predominantly elastic response at high frequencies, indicative of weak flocculation. Instability is explained in terms of hydrophobic and bridging interactions. Restabilization observed at high surfactant concentration was due to the steric repulsion of ethoxy groups of micellar aggregates adsorbed on silica particles. The study also revealed that the presence of trace water introduced charge repulsion that moderated rheoloaical measurements in glycol media and introduced the charge reversal of silica particles in dodecane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据