4.6 Article

Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer

期刊

LABORATORY INVESTIGATION
卷 92, 期 9, 页码 1358-1373

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/labinvest.2012.101

关键词

artificial neural network analysis; histopathology; immunohistochemistry; lung cancer; spectral histopathology

资金

  1. NIH/NCI [CA111330]
  2. Northeastern University
  3. Cireca Thernostics, LLC

向作者/读者索取更多资源

We report results of a study utilizing a recently developed tissue diagnostic method, based on label-free spectral techniques, for the classification of lung cancer histopathological samples from a tissue microarray. The spectral diagnostic method allows reproducible and objective diagnosis of unstained tissue sections. This is accomplished by acquiring infrared hyperspectral data sets containing thousands of spectra, each collected from tissue pixels about 6 mu m on edge; these pixel spectra contain an encoded snapshot of the entire biochemical composition of the pixel area. The hyperspectral data sets are subsequently decoded by methods of multivariate analysis, which reveal changes in the biochemical composition between tissue types, and between various stages and states of disease. In this study, a detailed comparison between classical and spectral histopathology (SHP) is presented, which suggests SHP can achieve levels of diagnostic accuracy that is comparable to that of multi-panel immunohistochemistry. Laboratory Investigation (2012) 92, 1358-1373; doi:10.1038/labinvest.2012.101; published online 2 July 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Medicine, Research & Experimental

Integration of RNA Sequencing, Whole Exome Sequencing, and Flow Cytometry Into Routine Diagnostic Workup of Pediatric Lymphomas

Marijn A. Scheijde-Vermeulen, Lennart A. Kester, Liset Westera, Bastiaan B. J. Tops, Friederike A. G. Meyer-Wentrup

Summary: This study aimed to evaluate the feasibility of integrating state-of-the-art sequencing techniques and flow cytometry into the diagnostic workup of pediatric lymphoma. The results showed that this integration is not only feasible but also provides additional diagnostic information.

LABORATORY INVESTIGATION (2024)

Article Medicine, Research & Experimental

Alternative Tissue Fixation Protocols Dramatically Reduce the Impact of DNA Artifacts, Unraveling the Interpretation of Clinical Comprehensive Genomic Profiling

Enrico Berrino, Sara Erika Bellomo, Anita Chesta, Paolo Detillo, Alberto Bragoni, Amedeo Gagliardi, Alessio Naccarati, Matteo Cereda, Gianluca Witel, Anna Sapino, Benedetta Bussolati, Gianni Bussolati, Caterina Marchi

Summary: Formalin-fixed paraffin-embedded (FFPE) samples are crucial for tissue-based analysis in precision medicine, but the quality of these samples can affect the reliability of sequencing data. The use of acid-deprived fixatives guarantees the highest DNA preservation and sequencing performance, enabling more complex molecular profiling of tissue samples.

LABORATORY INVESTIGATION (2024)

Article Medicine, Research & Experimental

Characterization of Immune Cell Populations of Cutaneous Neurofibromas in Neurofibromatosis 1

Roope A. Kallionpaa, Sirkku Peltonen, Kim My Le, Eija Martikkala, Mira Jaaskelainen, Elnaz Fazeli, Pilvi Riihila, Pekka Haapaniemi, Anne Rokka, Marko Salmi, Ilmo Leivo, Juha Peltonen

Summary: This study investigated the immune microenvironment of cutaneous neurofibromas (cNFs) in patients with neurofibromatosis 1 (NF1). The results showed that cNFs have substantial populations of T cells and macrophages, which may be tumor-specific. T cell populations in cNFs were found to be different from those in the skin, and cNFs exhibited lower expression of proteins related to T cell-mediated immunity compared to the skin.

LABORATORY INVESTIGATION (2024)