4.4 Article

Experimental and FE study on RC one-way slabs upgraded with FRP composites

期刊

KSCE JOURNAL OF CIVIL ENGINEERING
卷 19, 期 4, 页码 1024-1040

出版社

KOREAN SOCIETY OF CIVIL ENGINEERS-KSCE
DOI: 10.1007/s12205-013-0689-y

关键词

fiber reinforced polymer; concrete one-way slabs; flexural strengthening; finite element modeling

资金

  1. Deanship of Scientific Research at King Saud University [RGP-VPP-104]

向作者/读者索取更多资源

The use of externally bonded Fiber Reinforced Polymer (FRP) composites as a means of upgrading the flexural capacity of Reinforced Concrete (RC) one-way slabs is experimentally and numerically investigated in this study. A total of four groups of eight slabs were tested under four-point bending. The two slabs of the first group were left unstrengthened to be used as control specimens. The two slabs of the second group were externally strengthened with adhesively bonded pultruded, pre-cured CFRP plates. The four slabs of the last two groups were externally upgraded with unidirectional carbon (or E-glass) fiber fabric impregnated with an epoxy resin. In addition to the experimental program, a numerical investigation utilizing nonlinear Finite Element (FE) analysis was conducted using LS-DYNA software. Besides the eight slabs tested in this study, another eleven slabs were collected from the literature for the purpose of finite element validation. A comparison was made between the experimental and numerical results and good agreement was achieved. Based on FE validation, the numerical analysis was extended to include additional cases to study the effect of axial FRP stiffness and FRP-to-concrete width ratio on the flexural performance of upgraded slabs. As a result of the numerical study, new stiffness and reinforcement parameters were introduced in this research. These parameters were employed in the development of two new formulas for predicting the FRP debonding strain and percent gain in flexural capacity of FRP-strengthened slabs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据