4.7 Article

An improved scheme for minimum cross entropy threshold selection based on genetic algorithm

期刊

KNOWLEDGE-BASED SYSTEMS
卷 24, 期 8, 页码 1131-1138

出版社

ELSEVIER
DOI: 10.1016/j.knosys.2011.02.013

关键词

Image segmentation; Minimum cross entropy; Thresholding; Recursive programming; Genetic algorithms

资金

  1. National Natural Science Foundation of China [60803049, 60632050]

向作者/读者索取更多资源

Image segmentation is one of the most critical tasks in image analysis. Thresholding is definitely one of the most popular segmentation approaches. Among thresholding methods, minimum cross entropy thresholding (MCET) has been widely adopted for its simplicity and the measurement accuracy of the threshold. Although MCET is efficient in the case of bilevel thresholding, it encounters expensive computation when involving multilevel thresholding for exhaustive search on multiple thresholds. In this paper, an improved scheme based on genetic algorithm is presented for fastening threshold selection in multilevel MCET. This scheme uses a recursive programming technique to reduce computational complexity of objective function in multilevel MCET. Then, a genetic algorithm is proposed to search several near-optimal multilevel thresholds. Empirically, the multiple thresholds obtained by our scheme are very close to the optimal ones via exhaustive search. The proposed method was evaluated on various types of images, and the experimental results show the efficiency and the feasibility of the proposed method on the real images. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据