4.7 Article

An immune multi-objective optimization algorithm with differential evolution inspired recombination

期刊

APPLIED SOFT COMPUTING
卷 29, 期 -, 页码 395-410

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2015.01.012

关键词

Multi-objective optimization; Artificial immune; Differential evolution

资金

  1. National Natural Science Foundation of China [61303119, 61373043]
  2. Fundamental Research Funds for the Central Universities [JB140304]

向作者/读者索取更多资源

According to the regularity of continuous multi-objective optimization problems (MOPs), an immune multi-objective optimization algorithm with differential evolution inspired recombination (IMADE) is proposed in this paper. In the proposed IMADE, the novel recombination provides two types of candidate searching directions by taking three recombination parents which distribute along the current Pareto set (PS) within a local area. One of the searching direction provides guidance for finding new points along the current PS, and the other redirects the search away from the current PS and moves towards the target PS. Under the background of the SBX (Simulated binary crossover) recombination which performs local search combined with random search near the recombination parents, the new recombination operator utilizes the regularity of continuous MOPs and the distributions of current population, which helps IMADE maintain a more uniformly distributed PF and converge much faster. Experimental results have demonstrated that IMADE outperforms or performs similarly to NSGAII, NNIA, PESAII and OWMOSaDE in terms of solution quality on most of the ten testing MOPs. IMADE converges faster than NSGAII and OWMOSaDE. The efficiency of the proposed DE recombination and the contributions of DE and SBX recombination to IMADE have also been experimentally investigated in this work. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据