4.3 Article

Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at South-East Crater, Mt Etna, Italy

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jvolgeores.2014.01.009

关键词

Mt Etna; 24 November 2006 paroxysm; Tephra deposit; Ash componentry; Magma/gas decoupling

向作者/读者索取更多资源

Between 30 August and 15 December 2006, Mt Etna, Italy, underwent both effusive and explosive activity which took place from the South-East Crater, one of its summit craters. Several paroxysmal episodes followed in succession, separated by a few days of minor activity and characterised by dissimilar explosive style and intensity. Here, we report one of the most studied and powerful episodes, which started early in the morning on 24 November 2006 and lasted about 13 h. Excellent weather conditions enabled reconstructing in detail the onset and evolution of the eruptive phenomena both by live-camera recordings and direct observations. The explosive activity consisted of powerful Strombolian activity alternating with short periods of lava fountains. A weak volcanic plume rose up to similar to 2 km above the volcanic vent, followed by tephra fallout which covered the SE and S flanks of Etna. Campaigns allowed collecting about 40 tephra samples and mapping the fallout deposit. The clockwise shifting of the volcanic plume during the eruption caused the different timing of the fallout on the ground, thus widening the dispersal area. Voronoi's method was used to evaluate: i) the total grain-size distribution, indicating that the fallout deposit peaked at 1 phi, and, for the first time at Etna, ii) the total componentry distribution, finding that most of the particles were lithics, with a low proportion of juvenile vs. lithics (34:65). The total erupted mass was estimated similar to 1.9 x 10(8) kg, corresponding to a mass eruption rate of similar to 5 x 10(3) kg s(-1). Physical parameters and textural features of the erupted products suggest that the 24 November 2006 explosive event may be classified as small-sized in the recent history of Etna, and that the eruptive dynamic was mainly governed by magma/gas decoupling, which produced relatively fine-grained fallout deposits containing unusual elongated sideromelane ash particles. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据