4.3 Article

Latency characteristics of the short-wavelength-sensitive cones and their associated pathways

期刊

JOURNAL OF VISION
卷 9, 期 12, 页码 -

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/9.12.5

关键词

color vision; temporal vision; S-cones; retinal ganglion cells; lateral geniculate nucleus; latency; phase lags

资金

  1. Durham University
  2. NATIONAL EYE INSTITUTE [R01EY007556, R01EY013312] Funding Source: NIH RePORTER

向作者/读者索取更多资源

There are many distinct types of retinal ganglion and LGN cells that have opponent cone inputs and which may carry chromatic information. Of interest are the asymmetries in those LGN cells that carry S-cone signals: in S-ON cells, S+ signals are opposed by (L + M) whereas, in many S-OFF cells, L+ signals are opposed by (S + M), giving -S + L - M (C. Tailby, S. G. Solomon, & P. Lennie, 2008). However, the S-opponent pathway is traditionally modeled as +/-[S - (L + M)]. A phase lag of the S-cone signal has been inferred from psychophysical thresholds for discriminating combinations of simultaneous sinusoidal modulations along +/-[L - M] and +/-[S - (L + M)] directions (C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, & L. Spillmann, 1991). We extend this experiment, measuring discrimination thresholds as a function of the phase delay between pairs of orthogonal component modulations. When one of the components isolates the tritan axis, there are phase delays at which discrimination is impossible; when neither component is aligned with the tritan axis, discrimination is possible at all delays. The data imply that the S-cone signal is delayed by approximately 12 ms relative to (L - M) responses. Given that post-receptoral mechanisms show diverse tuning around the tritan axis, we suggest that the delay arises before the S-opponent channels are constructed, possibly in the S-cones themselves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据