4.6 Article

Characterization of a Single-Cycle Rabies Virus-Based Vaccine Vector

期刊

JOURNAL OF VIROLOGY
卷 84, 期 6, 页码 2820-2831

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01870-09

关键词

-

类别

资金

  1. NIH [R01AI049153, P01AI082325]

向作者/读者索取更多资源

Recombinant rabies virus (RV)-based vectors have demonstrated their efficacy in generating long-term, antigen-specific immune responses in murine and monkey models. However, replication-competent viral vectors pose significant safety concerns due to vector pathogenicity. RV pathogenicity is largely attributed to its glycoprotein (RV-G), which facilitates the attachment and entry of RV into host cells. We have developed a live, single-cycle RV by deletion of the G gene from an RV vaccine vector expressing HIV-1 Gag (SPBN-Delta G-Gag). Passage of SPBN-Delta G-Gag on cells stably expressing RV-G allowed efficient propagation of the G-deleted RV. The in vivo immunogenicity data comparing single-cycle RV to a replication-competent control (BNSP-Gag) showed lower RV-specific antibodies; however, the overall isotype profiles (IgG2a/IgG1) were similar for the two vaccine vectors. Despite this difference, mice immunized with SPBN-Delta G-Gag and BNSP-Gag mounted similar levels of Gag-specific CD8(+) T-cell responses as measured by major histocompatibility complex class I Gag-tetramer staining, gamma interferon-enzyme-linked immunospot assay, and cytotoxic T-cell assay. Moreover, these cellular responses were maintained equally at immunization titers as low as 103 focus-forming units for both RV vaccine vectors. CD8(+) T-cell responses were significantly enhanced by a boost with a single-cycle RV complemented with a heterologous vesicular stomatitis virus glycoprotein. These findings demonstrate that single-cycle RV is an effective alternative to replication-competent RV vectors for future development of vaccines for HIV-1 and other infectious diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据