4.6 Review

Modulation of Macrophage Infiltration and Inflammatory Activity by the Phosphatase SHP-1 in Virus-Induced Demyelinating Disease

期刊

JOURNAL OF VIROLOGY
卷 83, 期 2, 页码 522-539

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01210-08

关键词

-

类别

资金

  1. National Multiple Sclerosis Society [RG2569C5]
  2. NIH [NS041593]

向作者/读者索取更多资源

The protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling and inflammatory gene expression, both in the immune system and in the central nervous system (CNS). Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following inoculation with the Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Therefore, it became essential to investigate the mechanisms of TMEV-induced inflammation in the CNS of SHP-1-deficient mice. Herein, we show that the expression of several genes relevant to inflammatory demyelination in the CNS of infected me/me mice is elevated compared to that in wild-type mice. Furthermore, SHP-1 deficiency led to an abundant and exclusive increase in the infiltration of high-level-CD45-expressing (CD45(hi)) CD11b(+) Ly-6C(hi) macrophages into the CNS of me/me mice, in concert with the development of paralysis. Histological analyses of spinal cords revealed the localization of these macrophages to extensive inflammatory demyelinating lesions in infected SHP-1-deficient mice. Sorted populations of CNS-infiltrating macrophages from infected me/me mice showed increased amounts of viral RNA and an enhanced inflammatory profile compared to wild-type macrophages. Importantly, the application of clodronate liposomes effectively depleted splenic and CNS-infiltrating macrophages and significantly delayed the onset of TMEV-induced paralysis. Furthermore, macrophage depletion resulted in lower viral loads and lower levels of inflammatory gene expression and demyelination in the spinal cords of me/me mice. Finally, me/me macrophages were more responsive than wild-type macrophages to chemoattractive stimuli secreted by me/me glial cells, indicating a mechanism for the increased numbers of infiltrating macrophages seen in the CNS of me/me mice. Taken together, these findings demonstrate that infiltrating macrophages in SHP-1-deficient mice play a crucial role in promoting viral replication by providing abundant viral targets and contribute to increased proinflammatory gene expression relevant to the effector mechanisms of macrophage-mediated demyelination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据