4.7 Article

Nature of the coupling between neural drive and force-generating capacity in the human quadriceps muscle

出版社

ROYAL SOC
DOI: 10.1098/rspb.2015.1908

关键词

electromyography; physiological cross-sectional area; quadriceps

资金

  1. NHMRC [ID401599, ID1009410]
  2. NHMRC, Center of Advanced Imaging, University of Queensland [ID15003]
  3. Region Pays de la Loire (QUETE)

向作者/读者索取更多资源

The force produced by a muscle depends on both the neural drive it receives and several biomechanical factors. When multiple muscles act on a single joint, the nature of the relationship between the neural drive and force-generating capacity of the synergistic muscles is largely unknown. This study aimed to determine the relationship between the ratio of neural drive and the ratio of muscle force-generating capacity between two synergist muscles (vastus lateralis (VL) and vastus medialis (VM)) in humans. Twenty-one participants performed isometric knee extensions at 20 and 50% of maximal voluntary contractions (MVC). Myoelectric activity (surface electromyography (EMG)) provided an index of neural drive. Physiological cross-sectional area (PCSA) was estimated from measurements of muscle volume (magnetic resonance imaging) and muscle fascicle length (three-dimensional ultrasound imaging) to represent the muscles' force-generating capacities. Neither PCSA nor neural drive was balanced between VL and VM. There was a large (r = 0.68) and moderate (r = 0.43) correlation between the ratio of VL/VM EMG amplitude and the ratio of VL/VM PCSA at 20 and 50% of MVC, respectively. This study provides evidence that neural drive is biased by muscle force-generating capacity, the greater the force-generating capacity of VL compared with VM, the stronger bias of drive to the VL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据