4.0 Article

Neuropilin-1 Is Essential for Enhanced VEGF(165)-Mediated Vasodilatation in Collateral-Dependent Coronary Arterioles of Exercise-Trained Pigs

期刊

JOURNAL OF VASCULAR RESEARCH
卷 46, 期 2, 页码 152-161

出版社

KARGER
DOI: 10.1159/000152351

关键词

Coronary artery disease; Coronary microcirculation; Exercise; Vascular endothelial growth factor

资金

  1. National Institutes of Health [R01-HL064931]
  2. Centers for Disease Control and Prevention [CDC-623086]
  3. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL064931] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background/Aims: Exercise training enhances vasodilatation to vascular endothelial growth factor (VEGF(165)) in collateral-dependent coronary arterioles. Interaction of VEGF receptor 2 (VEGFR-2) and the non-tyrosine-kinase receptor, neuropilin-1 has been reported to potentiate VEGF(165)-mediated signaling. In the current study, we tested the hypotheses that neuropilin-1 mediates the exercise-enhanced VEGF(165)-mediated vasodilatation in collateral-dependent arterioles and that neuropilin-1 and/or VEGFR-2 protein levels are increased in these arterioles. Methods: Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Eight weeks after surgery, the animals were randomized into sedentary or exercise training (treadmill run; 5 days/week; 14 weeks) protocols. Coronary arterioles (similar to 100 mu m diameter) were isolated from both collateral-dependent and control (left anterior descending) myocardial regions and studied by in vitro videomicroscopy or frozen for immunoblot analysis. Results: Exercise-enhanced VEGF(165)-mediated vasodilatation in collateral-dependent arterioles was reversed by inhibition of the VEGF(165)-neuropilin-1 interaction. VEGF(121), which does not interact with neuropilin-1, induced similar vasodilatation in arterioles from all treatment groups. Immunoblot revealed significantly elevated VEGFR-1, VEGFR-2 and neuropilin-1 protein levels in collateral-dependent arterioles of exercise-trained pigs. Conclusions: Neuropilin-1 plays a vital role in the exercise-enhanced VEGF(165)-mediated vasodilatation of collateral-dependent coronary arterioles and is associated with increased neuropilin-1 receptor protein levels. Copyright (C) 2008 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据