4.4 Article

Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions

期刊

JOURNAL OF THERMAL SPRAY TECHNOLOGY
卷 17, 期 4, 页码 551-563

出版社

SPRINGER
DOI: 10.1007/s11666-008-9206-0

关键词

cold spray; modeling of cold spray; nozzle design; powder particle diagnostics; process parameters

向作者/读者索取更多资源

Cold gas dynamic spraying (CGDS), a relatively new thermal spraying technique has drawn a lot of attention due to its inherent capability to deposit a wide range of materials at relatively low-operating temperatures. A De Laval nozzle, used to accelerate the powder particles, is the key component of the coating equipment. Knowledge concerning the nozzle design and effect of process parameters is essential to understand the coating process and to enable selection of appropriate parameters for enhanced coating properties. The present work employs a one-dimensional isentropic gas flow model in conjunction with a particle acceleration model to calculate particle velocities. A laser illumination-based optical diagnostic system is used for validation studies to determine the particle velocity at the nozzle exit for a wide range of process and feedstock parameters such as stagnation temperature, stagnation pressure, powder feed rate, particle size and density. The relative influence of process and feedstock parameters on particle velocity is presented in this work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据