4.4 Article

Hutchinson revisited: Patterns of density regulation and the coexistence of strong competitors

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 259, 期 1, 页码 109-117

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2009.03.010

关键词

Over-compensation; Under-compensation; Relative nonlinearity; Lotka-Volterra; Complex dynamics

资金

  1. BMBF Germany (German Federal Ministry of Education and Research) [01 LB 0202]

向作者/读者索取更多资源

Ecologists have long been searching for mechanisms of species coexistence, particularly since G.E. Hutchinson raised the 'paradox of the plankton'. A promising approach to solve this paradox and to explain the coexistence of many species with strong niche overlap is to consider over-compensatory density regulation with its ability to generate endogenous population fluctuations. Previous work has analysed the role of over-compensation in coexistence based on analytical approaches. Using a spatially explicit time-discrete simulation model, we systematically explore the dynamics and conditions for coexistence of two species. We go beyond the analytically accessible range of models by studying the whole range of density regulation from under- to very strong overcompensation and consider the impact of spatial structure and temporal disturbances. In particular, we investigate how coexistence can emerge in different types of population growth models. We show that two strong competitors are able to coexist if at least one species exhibits overcompensation. Analysing the time series of population dynamics reveals how the differential responses to density fluctuations of the two competitors lead to coexistence: The over-compensator generates density fluctuations but is the inferior competitor at strong amplitudes of those fluctuations: the competitor, therefore, becomes frequent and dampens the over-compensator's amplitudes, but it becomes inferior under dampened fluctuations. These species interactions cause a dynamic alternation of community states with long-term persistence of both species. We show that a variety of population growth models is able to reproduce this coexistence although the particular parameter ranges differ among the models. Spatial structure influences the probability of coexistence but coexistence is maintained for a broad range of dispersal parameters. The flexibility and robustness of coexistence through over-compensation emphasize the importance of nonlinear density dependence for species interactions, and they also highlight the potential of applying more flexible models than the classical Lotka-Volterra equations in community ecology. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据