4.6 Article

On the importance of collective excitations for thermal transport in graphene

期刊

APPLIED PHYSICS LETTERS
卷 106, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4921127

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Fonds de Recherche du Quebec Nature et Technologies (FRQ-NT)

向作者/读者索取更多资源

We use equilibrium molecular dynamics (MD) simulations to study heat transport in bulk single-layer graphene. Through a modal analysis of the MD trajectories employing a time-domain formulation, we find that collective excitations involving flexural acoustic (ZA) phonons, which have been neglected in the previous MD studies, actually dominate the heat flow, generating as much as 78% of the flux. These collective excitations are, however, much less significant if the atomic displacements are constrained in the lattice plane. Although relaxation is slow, we find graphene to be a regular (non-anomalous) heat conductor for sample sizes of order 40 mu m and more. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据