4.3 Review

Fermi Surface Properties, Metamagnetic Transition and Quantum Phase Transition of CeRu2Si2 and Its Alloys Probed by the dHvA Effect

期刊

出版社

PHYSICAL SOC JAPAN
DOI: 10.7566/JPSJ.83.072001

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [26400373, 26400345] Funding Source: KAKEN

向作者/读者索取更多资源

This article describes the Fermi surface properties of CeRu2Si2 and its alloy systems CeRu2(SixGe1-x)(2) and CexLa1-xRu2Si2 studied by the de Haas-van Alphen (dHvA) effect. We pay particular attention to how the Fermi surface properties and the f electron state change with magnetic properties, in particular how they change associated with metamagnetic transition and quantum phase transition. After summarizing the important physical properties of CeRu2Si2, we present the magnetic phase diagrams of CeRu2(SixGe1-x)(2) and CexLa1-xRu2Si2 as a function of temperature, magnetic field and concentration x. From the characteristic features of the magnetic phase diagram, we argue that the ferromagnetic interaction in addition to the antiferromagnetic interaction and the Kondo effect is responsible for the magnetic properties and that the metamagnetic transitions in these systems are relevant to the ferromagnetic interaction. We summarize the Fermi surface properties of CeRu2Si2 in fields below the metamagnetic transition where the f electron state is now well understood theoretically as well as experimentally. We present experimental results in fields above the metamagnetic transitions in CeRu2(SixGe1-x)(2) and CexLa1-xRu2Si2 as well as CeRu2Si2 to show that the Fermi surface properties above the metamagnetic transitions are significantly different from those below in many important aspects. We argue that the Fermi surface properties above the metamagnetic transitions are not appropriately described in terms of either itinerant or localized f electron. The experimental results in fields below the metamagnetic transitions in CeRu2(SixGe1-x)(2) and CexLa1-xRu2Si2 are presented to discuss the f electron state in the ground state. The Fermi surface properties of dilute Kondo alloys of CexLa1-xRu2Si2 have been revealed as a function of Ce concentration and temperature. We show that the f electron state can be regarded as itinerant in the ground state together with the definition of the term itinerant in this case. The Fermi surface properties are measured also in high concentration alloys of CeRu2(SixGe1-x)(2) and CexLa1-xRu2Si2 as a function of x. With the help of the angle resolved photoemission spectroscopy studies, we show that the f electron nature does not change at the quantum phase transition between the paramagnetic and antiferromagnetic phases. However, the picture for the f electron state may be ambiguous and depend on which property one considers in the magnetic states of these systems. The ambiguity and confusion of the f electron state may come from the inherent dual nature of the f electron and we would like to point out that it is sometimes misleading and may not be fruitful to discriminate the f electron state either as itinerant or localized without any clear definition for the terms itinerant and localized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据