4.4 Article

Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.30.002970

关键词

-

类别

资金

  1. Swiss National Science Foundation (SNSF) [200021_132694]
  2. CCMX (Fanosense)
  3. Swiss National Science Foundation (SNF) [200021_132694] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

A surface integral formulation for the second-harmonic generation (SHG) from periodic metallic-dielectric nano-structures is described. This method requires the discretization of the scatterers' surface in the unit cell only. All the physical quantities involved in this problem are derived in the unit cell by applying specific periodic boundary conditions both at the fundamental and the second-harmonic (SH) frequencies. Both the fundamental and the SH electric fields are computed using the method of moments and periodic Green's function evaluated with the Ewald's method. The accuracy of the method is carefully assessed using two specific cases, namely the surface plasmon enhancement of SHG from a gold film and the SHG from L-shaped nanoparticle arrays. These two examples emphasize the accuracy and versatility of the proposed method, which can be applied to a broad range of periodic metallic structures, including plasmonic arrays on arbitrary substrates and metamaterials. (C) 2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据