3.9 Article

Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream

期刊

出版社

NORTH AMER BENTHOLOGICAL SOC
DOI: 10.1899/07-081.1

关键词

biodiversity; biogeography; decay; decomposition; electric exclusion; insular; lotic; Macrobrachium; Pacific island; leaf-litter processing; tropical stream

资金

  1. US Department of Agriculture Forest Service Institute of Pacific Islands Forestry
  2. University of Georgia

向作者/读者索取更多资源

Pacific island stream communities are species-poor because of the effects of extreme geographic isolation on colonization rates of taxa common to continental regions. The effects of such low species richness on stream ecosystem function are not well understood. Here, we provide data on community structure and leaf litter breakdown rate in a virtually pristine stream on a remote island in the eastern Caroline Islands of Micronesia. The Yela River catchment on Kosrae, Federated States of Micronesia, is uninhabited, completely forested, and not traversed by any road. At each of 5 sampling stations along the Yela River we measured physical and chemical variables, characterized the benthic invertebrate community, and estimated the relative abundance of macroconsumers (fishes, shrimps, and snails) using snorkeling surveys and trapping. Benthic invertebrate biomass decreased with stream size and was dominated by macroconsumers (i.e., decapods and gastropods). Benthic insect species richness and density were extremely low, characterized by the complete absence of Ephemeroptera, Trichoptera, and Plecoptera, with nonshredding larval Chironomidae making up similar to 85% of the exceptionally low insect biomass (similar to 0.6 mg dry mass/m). Six species each of fishes and shrimps and 4 snail species were found. We examined the functional role of these noninsect macroconsumers in organic matter processing by comparing litter breakdown rates inside and outside electrified macroconsumer-excluding quadrats at a single site in the lower Yela River. Breakdown rates were slow relative to those reported in most tropical litter decay studies (k = 0.004-0.018 among quadrats). Despite differences in macroconsumer density (p = 0.01), the leaf breakdown rate was not significantly different between reference and electrified treatments (p=0.77). Thus, macroconsumers at this site had neither a direct role in shredding nor an indirect effect on leaf breakdown through their interactions with any nonexcluded taxa. In the absence of a significant role played by insect or macroconsumer shredders, leaf litter breakdown in streams of remote Pacific oceanic islands might be driven purely by physical and microbial processes. Our results suggest that biogeographic processes have placed some Pacific island streams at the extreme low end of a continuum of shredder biodiversity and biomass, restricting the ecosystem function of their species-poor communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据