4.4 Article

A SUMOylation-Dependent Pathway Regulates SIRT1 Transcription and Lung Cancer Metastasis

期刊

JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE
卷 105, 期 12, 页码 887-898

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jnci/djt118

关键词

-

类别

资金

  1. National Basic Science Research 973 Program of China [2012CB517503, 2011CB910604, 2012CB822104]
  2. National Natural Science Foundation of China [30730044, 30870320, 31070723, 81172879]
  3. Program for New Century Excellent Talents in University of China [NCET-11-0991]
  4. Science and Technology Administration of Jiangsu Province [BK2012043]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Epithelial-to-mesenchymal transition (EMT) plays a pivotal role in lung cancer metastasis. The class III deacetylase sirtuin 1 (SIRT1) possesses both pro- and anticarcinogenic properties. The role of SIRT1 in lung cancer EMT is largely undefined. The effect of SIRT1 on migration of lung cancer cells was evaluated by wound healing assay in vitro and metastasis assay in nude mice in vivo. Protein expression in human lung cancers and cultured lung cancer cells was assessed by western blotting and immunohistochemistry. Interaction between protein and DNA was measured by chromatin immunoprecipitation assay. SIRT1 promoter activity was determined by reporter assay. SIRT1 activation antagonized migration of lung cancer cells by suppressing EMT in vitro. Activation of SIRT1 by resveratrol also statistically significantly hampered (by 68.33%; P < .001, two-sided test) lung cancer cell metastasis in vivo. Hypoxia repressed SIRT1 transcription through promoting the competition between Sp1 and HIC1 on the SIRT1 proximal promoter in a SUMOylation-dependent manner. Disruption of SUMOylation by targeting either Ubc9 or PIASy restored SIRT1 expression in and favored an epithelial-like phenotype of cancer cells, thereby preventing metastasis. Decreased SIRT1 combined with elevated PIASy expression was implicated in more-invasive types of lung cancers in humans. We have identified a novel pathway that links SIRT1 down-regulation to hypoxia-induced EMT in lung cancer cells and may shed light on the development of novel antitumor therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据