4.7 Article

Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2013.12.009

关键词

Crack tip plasticity; Twinning; Slip; Aluminum; Molecular dynamics simulation

资金

  1. National Institute of Aerospace [NCC-1-02043]
  2. NASA [NNX08BA39A, NNX07AU56A]
  3. Office of Naval Research [N00014-08-1-0862, N00014-10-1-0323, N00014-07-1-0528]
  4. NASA [NNX08BA39A, 90532] Funding Source: Federal RePORTER

向作者/读者索取更多资源

This work investigates the dislocation nucleation processes that occur at the tip of a crack in aluminum under a broad range of crystallographic orientations and temperatures. A concurrent multiscale molecular dynamics - continuum simulation framework is employed. The results are then interpreted using a Peierls continuum model that uses finite temperature material properties derived from molecular dynamics simulation. Under ramped loading, partial dislocation nucleation at the crack tip is found to lead to both full dislocation emission and twinning, depending upon the orientation, temperature, and magnitude of the applied load in the simulation. The origins of the dependencies are made apparent by the Peierls continuum model. The continuum model suggests that in many instances dislocation nucleation from the crack tip can be considered to be a strain rate independent process, yet still temperature dependent through the temperature dependence of the stacking fault energies and elastic constants. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据