4.5 Article

Dual Drug Spatiotemporal Release From Functional Gradient Scaffolds Prepared Using 3D Bioprinting and Electrospinning

期刊

POLYMER ENGINEERING AND SCIENCE
卷 56, 期 2, 页码 170-177

出版社

WILEY
DOI: 10.1002/pen.24239

关键词

-

资金

  1. National Science Foundation of China [51475281, 51375292]
  2. National Youth Foundation of China [51105239]
  3. Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing [3DL201504]

向作者/读者索取更多资源

Functional gradient scaffolds play an important role in osteochondral tissue engineering because they can meet the essential requirement for a gradual transition of both physical and chemical properties in osteochondral tissue regeneration. There is a requirement for 3D composite osteochondral regeneration scaffolds with multiscale structures that are capable of controlling release of multiple biomolecules. To this end, this article describes a 3D bioprinting platform integrated forming system designed to produce various drug-loaded scaffolds. A novel scaffold was fabricated by the self-developed 3D bioprinting platform combining extrusion deposition with multi-nozzle electrospinning. For temporally controlled release of gentamycin sulfate (GS) and desferoxamine (DFO), blend electrospun GS/polyvinyl alcohol (PVA) and coaxial electrospun core (PVA-DFO)/shell (polycaprolactone; PCL) fibers were deposited in the scaffold. After a 25-day time-lapse release study in vitro, results showed GS released faster than DFO during the early stages and sustained release of DFO for long periods. For spatially controlled release of DFO, the vertically gradient gelatin/sodium alginate (SA) scaffolds presented to enable the release amount of DFO in a gradient mode. The experiment and test results demonstrate the validity of the 3D bioprinting platform integrated forming system and the excellent properties of such scaffolds for performing multidrug spatiotemporal release. (C) 2015 Society of Plastics Engineers

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据