4.6 Article

A Model to Determine the Chemical Expansion in Non-Stoichiometric Oxides Based on the Elastic Force Dipole

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 161, 期 11, 页码 F3060-F3064

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0101411jes

关键词

-

资金

  1. NSF [CMMI-1363203]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1363203] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this work a novel continuum model informed by density functional theory (DFT) simulations is presented and used to predict the chemical expansion observed in non-stoichiometric oxides. We introduce an elastic dipole tensor that describes the long-range elastic fields created upon formation of oxygen vacancies. We show that this tensor, which can be accurately determined through first-principle DFT calculations, can be used to predict the chemical.expansion of ceria and in general other non-stoichiometric oxides. Compared to previous work where expansivity waS obtained with empirical potentials, our work provides an efficient way of computing it directly by DFT calculations. Furthermore, we discuss how the elastic dipole tensor can predict the O-2 partial pressure vs O/Ce ratios in strained systems and show that CeO2 can be reduced more easily in the presence of tensile strains. More generally, the elastic dipoles can be used in continuum models to predict the distribution of vacancies near nanocrystal surfaces, grain boundaries and extended defects such as dislocations and hence provide information on how these structures and defects influence the overall reducibility of the material. (C) 2014 The Electrochemical Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据