4.6 Article

Degradation and Structural Evolution of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 during Cycling

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 161, 期 1, 页码 A160-A167

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.079401jes

关键词

-

资金

  1. State Key Basic Research Program of PRC [2011CB935903]
  2. National Natural Science Foundation of China [20925312]
  3. Shanghai Science & Technology Committee [10JC1401500, 08DZ2270500]

向作者/读者索取更多资源

In the present work, the electrochemical degradation and structural evolution of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, and 0.7) materials and the role of Li2MnO3 component during electrochemical cycling are systematically studied through careful analysis of electrochemical data, ex-situ XRD, and HR-TEM observations. The materials consisting of higher Li2MnO3 content show better cyclic performance with more significant voltage decay compared to that of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 electrodes with low Li2MnO3 content. The electrochemical degradation of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 electrodes upon cycling not only results from the remarkably increase in impedance caused by the damage of the electrode surface, in particular for low Li2MnO3 content; but also arises from structural rearrangement, especially for high Li2MnO3 content. Upon cycling, high Li2MnO3 content in the crystal structure of lithium-rich transition metal oxides can stabilize the electrode\electrolyte interface at high potentials, facilitates the rapid formation of cracks and porosity in the cycled electrodes, and promotes the distortions and breakdown of the original well-layered lattice. (C) 2013 The Electrochemical Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据