4.5 Article

Sensitivity Hot Spots in the Direct Analysis in Real Time Mass Spectrometry of Nerve Agent Simulants

期刊

出版社

SPRINGER
DOI: 10.1007/s13361-011-0276-8

关键词

Direct analysis in real time (DART); Ambient MS; Ionization fundamentals; Ion suppression; Nerve agent simulants

资金

  1. NSF

向作者/读者索取更多资源

Presented here are findings describing the spatial-dependence of sensitivity and ion suppression effects observed with direct analysis in real time (DART). Continuous liquid infusion of dimethyl methyl phosphonate (DMMP) revealed that ion yield hot spots did not always correspond with the highest temperature regions within the ionization space. For instance, at lower concentrations (50 and 100 mu M), the highest sensitivities were in the middle of the ionization region at 200 degrees C where there was a shorter ion transport distance, and the heat available to thermally desorb neutrals was moderate. Conversely, at higher DMMP concentrations (500 mu M), the highest ion yield was directly in front of the DART source at 200 degrees C where it was exposed to the highest temperature for thermal desorption. In matching experiments, differential analyte volatility was observed to play a smaller role in relative ion suppression than differences in proton affinity and the relative sampling positions of analytes. At equimolar concentrations sampled at the same position, suppression was as high as 26x between isoquinoline (proton affinity 952 kJ mol(-1), boiling point 242 degrees C) and p-anisidine (proton affinity 900 kJ mol(-1), boiling point 243 degrees C). This effect was exacerbated when sampling positions of the two analytes differed, reaching levels of relative suppression as high as 4543.0x +/- 1406.0. To mitigate this level of relative ion suppression, sampling positions and molar ratios of the analytes were modified to create conditions in which ion suppression was negligible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据