4.6 Article

Comparative Study of Non-Enveloped Icosahedral Viruses Size

期刊

PLoS One
卷 10, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0142415

关键词

-

资金

  1. Russian Science Foundation [14-24-00007]
  2. Russian Foundation for Basic Research [14-04-31449 mol_a]
  3. Russian Science Foundation [14-24-00007] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Now, as before, transmission electron microscopy (TEM) is a widely used technique for the determination of virions size. In some studies, dynamic light scattering (DLS) has also been applied for this purpose. Data obtained by different authors and using different methods could vary significantly. The process of TEM sample preparation involves drying on the substrate, which can cause virions to undergo morphology changes. Therefore, other techniques should be used for measurements of virions size in liquid, (i. e. under conditions closer to native). DLS and nanoparticle tracking analysis (NTA) provide supplementary data about the virions hydrodynamic diameter and aggregation state in liquid. In contrast to DLS, NTA data have a higher resolution and also are less sensitive to minor admixtures. In the present work, the size of non- enveloped icosahedral viruses of different nature was analyzed by TEM, DLS and NTA: the viruses used were the encephalomyocarditis virus (animal virus), and cauliflower mosaic virus, brome mosaic virus and bean mild mosaic virus (plant viruses). The same, freshly purified, samples of each virus were used for analysis using the different techniques. The results were compared with earlier published data and description databases. DLS data about the hydrodynamic diameter of bean mild mosaic virus, and NTA data for all examined viruses, were obtained for the first time. For all virus samples, the values of size obtained by TEM were less than virions sizes determined by DLS and NTA. The contribution of the electrical double layer (EDL) in virions hydrodynamic diameter was evaluated. DLS and NTA data adjusted for EDL thickness were in better agreement with TEM results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据