4.8 Article

Hydrophobic Molecules Infiltrating into the Poly(ethylene glycol) Domain of the Core/Shell Interface of a Polymeric Micelle: Evidence Obtained with Anomalous Small-Angle X-ray Scattering

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 7, 页码 2574-2582

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja308965j

关键词

-

资金

  1. JST CREST program
  2. Grants-in-Aid for Scientific Research [22300170, 23550248] Funding Source: KAKEN

向作者/读者索取更多资源

Polymeric micelles have been extensively studied as nanoscale drug carriers. Knowing the inner structure of polymeric micelles that encapsulate hydrophobic drugs is important to design effective carriers. In our study, the hydrophobic compound tetrabromocathecol (TBC) was chosen as a drug-equivalent model molecule. The bromine atoms in TBC act as probes in anomalous small-angle X-ray scattering (ASAXS) allowing for its localization in the polymeric micelles whose shape and size were determined by normal small-angle X-ray scattering (SAXS). Light scattering measurements coupled with field flow fractionation were also carried out to determine the aggregation number of micelles. A core corona spherical model was used to explain the shape of the micelles, while the distribution of bromine atoms was explained with a hard-sphere model. Interestingly, the radius of the spherical region populated with bromine atoms was larger than the one of the sphere corresponding to the hydrophobic core of the micelle. This result suggests that the TBC molecules infiltrate the PEG hydrophilic domain in the vicinity of the core/shell interface. The results of light scattering and SAXS indicate that the PEG chains at the shell region are densely packed, and thus the PEG domain close to the interface has enough hydrophobicity to tolerate the presence of hydrophobic compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据