4.8 Article

Unraveling the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 10, 页码 4850-4856

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja211181q

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308]

向作者/读者索取更多资源

The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the non-covalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT C-13 chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of C-13 labeling and density gradient ultracentrifugation (DGU) to produce an array of C-13-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic C-13 chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the C-13 chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据