4.8 Article

Efficient Direct Electron Transfer with Enzyme on a Nanostructured Carbon Film Fabricated with a Maskless Top-Down UV/Ozone Process

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 13, 页码 4840-4846

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja108614d

关键词

-

资金

  1. Japan Society for the Promotion of Science
  2. Nanotechnology Network Japan of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
  3. MEXT, Japan [20245019]
  4. Grants-in-Aid for Scientific Research [20245019] Funding Source: KAKEN

向作者/读者索取更多资源

We have developed a new carbon film electrode material with thornlike surface nanostructures to realize efficient direct electron transfer (DET) with enzymes, which is very important for various enzyme biosensors and for anodes or cathodes used in biofuel cells. The nanostructures were fabricated using UV/ozone treatment without a mask, and the obtained nanostructures were typically 2-3.5 nm high as confirmed by atomic force microscopy measurements. X-ray photoelectron spectroscopy and transmission electron microscopy revealed that these nanostructures could be formed by employing significantly different etching rates depending on nanometer-order differences in the local sp(3) content of the nanocarbon film, which we fabricated with the electron cyclotron resonance sputtering method. These structures could not be realized using other carbon films such as boron-doped diamond, glassy carbon, pyrolyzed polymers based on spin-coated polyimide or vacuum-deposited phthalocyanine films, or diamond-like carbon films because those carbon films have relatively homogeneous structures or micrometer-order crystalline structures. With physically adsorbed bilirubin oxidase on the nanostructured carbon surface, the DET catalytic current amplification was 30 times greater than that obtained with the original carbon film with a flat surface. This efficient DET of an enzyme could not be achieved by changing the hydrophilicity of the flat carbon surface, suggesting that DET was accelerated by the formation of nanostructures with a hydrophilic surface. Efficient DET was also observed using cytochrome c.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据