4.8 Article

Fabrication of Asymmetric Molecular Junctions by the Oriented Assembly of Dithiocarbamate Rectifiers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 15, 页码 5921-5930

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja110244j

关键词

-

向作者/读者索取更多资源

The oriented assembly of molecules on metals is a requirement for rectification in planar metal-molecule-metal junctions. Here, we demonstrate how the difference in adsorption kinetics between dithiocarbamate and thioacetate anchor groups can be utilized to form oriented assemblies of asymmetric molecules that are bound to Au through the dithiocarbamate moiety. The free thioactate group is then used as a ligand to bind Au nanoparticles and to form the desired metal-molecule-metal junction. Besides allowing an asymmetric coupling to the electrodes, the molecules exhibit an asymmetric molecular backbone where the length of the alkyl chains separating the electrodes from a central, para-substituted phenyl ring differs by two methylene units. Throughout the junction fabrication, the layers were characterized by photoelectron spectroscopy, infrared spectroscopy, and scanning tunneling microscopy. Large area junctions using a conducting polymer interlayer between a mercury-drop electrode and the self-assembled monolayer prove the relationship between electrical data and molecular structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据