4.8 Article

Probing Ground-State Single-Electron Self-Exchange across a Molecule-Metal Interface

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 18, 页码 6989-6996

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja109306r

关键词

-

资金

  1. Basic Energy Science of Department of Energy
  2. Division of Chemistry of National Science Foundation
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0822694] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have probed single-molecule redox reaction dynamics of hemin (chloride) adsorbed on Ag nanoparticle surfaces by single-molecule surface-enhanced Raman spectroscopy (SMSERS) combined with spectroelectrochemistry. Redox reaction at the molecule/Ag interface is identified and probed by the prominent fluctuations of the Raman frequency of a specific vibrational mode, nu(4), which is a typical marker of the redox state of the iron center in a hemin molecule. On the basis of the autocorrelation and cross-correlation analysis of the single-molecule Raman spectral trajectories and the control measurements of single-molecule spectroelectochemistry and electrochemical STM, we suggest that the single-molecule redox reaction dynamics at the hemin Ag interface is primarily driven by thermal fluctuations. The spontaneous fluctuation dynamics of the single-molecule redox reaction is measured under no external electric potential across the molecule metal interfaces, which provides a novel and unique approach to characterize the interfacial electron transfer at the molecule metal interfaces. Our demonstrated approaches are powerful for obtaining molecular coupling and dynamics involved in interfacial electron transfer processes. The new information obtained is critical for a further understanding, design, and manipulation of the charge transfer processes at the molecule metal interface or metal-molecule-metal junctions, which are fundamental elements in single-molecule electronics, catalysis, and solar energy conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据