4.8 Article

Tuning Polymer Thickness: Synthesis and Scaling Theory of Homologous Series of Dendronized Polymers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 33, 页码 11841-11854

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja9032132

关键词

-

资金

  1. ETH [TH-1608-1, TH-0908-2]
  2. European Community [NMP3-CT-2005-016375, FP6-2004-NMP-T1-4 STRP 033339]

向作者/读者索取更多资源

The thickness of dendronized polymers can be tuned by varying their generation g and the dendron functionality X. Systematic studies of this effect require (i) synthetic ability to produce large samples of high quality polymers with systematic variation of g, X and of the backbone polymerization degree N, (ii) a theoretical model relating the solvent swollen polymer diameter, r, and persistence length, lambda, to g and X. This article presents an optimized synthetic method and a simple theoretical model. Our theory. approach, based on the Boris-Rubinstein model of dendrimers predicts r similar to n(1/4)g(1/2) and lambda similar to n(2) where n = [(X - 1)(g) - 1]/(X - 2) is the number of monomers in a dendron. The average monomer concentration in the branched. side chains of a dendronized polymer increases with g in qualitative contrast to bottle brushes whose side chains are linear. The stepwise, attach-to, synthesis of X = 3 dendronized polymers yielded gram amounts of g = 1-4 polymers with N approximate to 1000 and N approximate to 7000 as compared to earlier maxima of 0.1 g amounts and of N approximate to 1000. The method can be modified to dendrons of different X The conversion fraction at each attach-to step, as quantified by converting unreacted groups with UV labels, was 99.3% to 99.8%. Atomic force microscopy on mixed polymer samples allows to distinguish between chains of different g and suggests an apparent height difference of 0.85 nm per generation as well as an increase of persistence length with g. We suggest synthetic directions to allow confrontation with theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据