4.8 Article

Dissecting entropic coiling and poor solvent effects in protein collapse

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 35, 页码 11578-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja802341q

关键词

-

资金

  1. Columbia University
  2. Alexander von Humboldt Foundation

向作者/读者索取更多资源

The early events in protein collapse and folding are guided by the protein's elasticity. The contributions of entropic coiling and poor solvent effects like hydrophobic forces to the elastic response of proteins are currently unknown. Using molecular simulations of stretched ubiquitin in comparison with models of proteins as entropic chains, we find a surprisingly high stiffness of the protein backbone, reflected by a persistence length of 1.2 nm, which is significantly reduced by hydrophobic forces acting between protein side chains to an apparent persistence length of 0.3-0.6 nm frequently observed in single-molecule stretching experiments. Thus, the poor solvent conditions of a protein in water lead to a protein compaction much beyond the coiling of an entropic chain and thereby allow a protein to appear softer than when using good solvents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据