4.4 Article

Reinforced Concrete Force Visualization and Design Using Bilinear Truss-Continuum Topology Optimization

期刊

JOURNAL OF STRUCTURAL ENGINEERING
卷 139, 期 4, 页码 607-618

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)ST.1943-541X.0000692

关键词

Structural optimization; Topology optimization; Strut-and-tie model; Reinforced concrete; Prestressed concrete; Force visualization

资金

  1. National Science Foundation (NSF) IGERT Program [DGE-0801471]
  2. [CMMI-0928613]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [0928613] Funding Source: National Science Foundation

向作者/读者索取更多资源

A new force visualization and design tool employing hybrid topology optimization is introduced for RC and prestressed concrete structural members. The optimization scheme couples a minimum compliance (maximum stiffness) objective function with a hybrid truss-continuum ground structure that can generate a strut-and-tie model for any general concrete member, loading, and set of boundary conditions. The truss ground structure represents discrete steel reinforcing bars (tensile load paths) that can be sized based on axial forces output directly by the optimization routine, whereas the continuum elements simulate concrete compression struts. This separation of compressive and tensile load-carrying elements is achieved through bilinear elastic models with an orthotropic constitutive relationship for the continuum. Examples are provided demonstrating the potential value of the optimization tool to RC design. Reinforcing layouts that can minimize cracking and reduce steel quantities when compared with traditional designs are provided for a prismatic beam, a hammerhead pier, a stepped beam with a cutout, and the local anchorage zone of a prestressed concrete block. A minimum length scale constraint is employed to control complexity of the strut-and-tie topology, accommodating design solutions that balance material savings, structural performance, and constructability. DOI: 10.1061/(ASCE)ST.1943-541X.0000692. (C) 2013 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据