4.1 Article

Polytetrahedral order and chemical short-range order in metallic melts

期刊

JOURNAL OF STRUCTURAL CHEMISTRY
卷 54, 期 2, 页码 332-340

出版社

PLEIADES PUBLISHING INC
DOI: 10.1134/S002247661302008X

关键词

metallic melts; single-crystal X-ray diffraction analysis; prepeak; icosahedral short-range order; chemical short-range order; polytetrahedral clusters

资金

  1. RFBR [10-03-90900, 12-03-654]

向作者/读者索取更多资源

The reasons are investigated for the prepeak and the asymmetry of the second peak in the structure factor curve that are observed in a variety of metallic melts. The prepeak is observed as an additional maximum in the left wing of the main peak of the structure factor for multicomponent melts and is attributed to their chemical short-range order (CSRO). The asymmetry of the second peak in the structure factor, which is usually explained by the icosahedral (polytetrahedral) order in the melt, is observed both for multicomponent systems and for pure metals. However, some aluminum alloys with transition metals exhibit the two features simultaneously, which requires an explanation. An X-ray diffraction study of the liquid ternary Al66.6Mn16.7Co16.7 alloy is performed at 1393 K and that of liquid copper at 1353 K, 1403 K, and 1553 K. The reverse Monte Carlo (RMC) method is used to derive structural models of these and other melts. Structural analysis of these melts is conducted using Delaunay simplices. A theoretical simulation of CSRO is performed in the model of liquid aluminum, the structure factor of which does not have these features. It is discussed that CSRO can exist in a melt regardless of the presence of the polytetrahedral order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据