4.4 Article

Structural and dynamical analysis of an engineered FhuA channel protein embedded into a lipid bilayer or a detergent belt

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 177, 期 2, 页码 291-301

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2011.12.021

关键词

Molecular dynamics; Channel proteins; Protein engineering; Nanotechnological applications; beta-Barrel; Lipid bilayer

向作者/读者索取更多资源

Engineered channel proteins are promising nano-components with applications in nanodelivery and nanoreactors technology. Because few of the engineered channel proteins have been crystallized, solution studies based on Neutron Scattering, Circular Dichroism and NMR play a major role. Consequently, the understanding of membrane proteins dynamics in water/detergent solutions or when embedded in a lipid membrane, can clarify how the environment affects protein behavior. In this study, molecular dynamics simulations of the FhuA Escherichia colt outer membrane channel protein and its engineered FhuA Delta 1-159 variant have been performed in two different environments: a DNPC (1,2-dinervonyl-sn-glycero-3-phosphocholine) lipid bilayer and a water/OES (N-octyl-2-hydroxyethyl sulfoxide) detergent solution. Furthermore the FhuA Delta 1-159 variant has been simulated in the open and closed states, the last induced by the presence of six 3-(2-pyridyldithio)-propionic-acid in the channel inner core. Differences in protein structural and dynamical behavior between the two environments have been found. Considering the FhuA protein characterized by an elliptical-cylindrical symmetry: (a) neither variations on the secondary structure nor axial deformation have been observed in any of the systems; (b) the ellipticity of the channel section (open state) and its fluctuations are enhanced in presence of water/OES, while diminished or suppressed in the DNPC bilayer; (c) the insertion of hydrophobic pyridyl groups into the FhuA Delta 1-159 channel (closed state) induces a higher ellipticity in water/OES solution, while shifting to a circular section in the DNPC membrane; (d) the cork domain represented by the first 159 amino acids does not play a major role for protein stability. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据